期刊文章详细信息
文献类型:期刊文章
机构地区:[1]苏州大学计算机科学与技术学院自然语言处理实验室,江苏苏州215006
基 金:国家自然科学基金(61331011;61375073;61402314)~~
年 份:2017
卷 号:28
期 号:9
起止页码:2468-2480
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSCD、CSCD2017_2018、EI、IC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:社交媒体上的个人群体信息对于理解社交网络结构非常有用,现有研究主要基于用户之间的链接和显式社交信息识别用户的个人群体,很少考虑使用文本信息与隐含社交信息.在显式社交信息缺乏时,隐含社交信息以及文本信息对于识别用户的群体是非常有帮助的.提出一种隐含因子图模型,有效地利用各种隐含与显式的社交与文本信息对用户的群组进行识别.其中,显式的文本与社交信息是通过用户发表的文本与个人关系生成的.同时,利用矩阵分解模型自动生成隐含的文本与社交信息.最后,利用因子图模型与置信传播算法对显式与隐含的文本与社交信息进行集成,并对用户群组识别模型进行学习与预测.实验结果表明,该方法能够有效地对用户群组进行识别.
关 键 词:群组推荐 社交网络 隐含信息 矩阵分解 因子图模型
分 类 号:TP311]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...