期刊文章详细信息
文献类型:期刊文章
机构地区:[1]重庆大学信息物理社会可信服务计算教育部重点实验室,重庆400044 [2]重庆大学软件学院,重庆400044
基 金:高等学校博士学科点专项科研基金博导类资助项目(20130191110027)~~
年 份:2017
卷 号:40
期 号:7
起止页码:32-36
语 种:中文
收录情况:BDHX、BDHX2014、CAS、CSCD、CSCD2017_2018、EI、IC、JST、RCCSE、SCOPUS、核心刊
摘 要:车型识别是目标检测领域在智能交通的重要应用,也是近年来国内外学者的研究热点之一。针对已有车辆检测方法缺乏识别车型能力的问题,提出了基于Faster-RCNN目标检测模型与ZF、VGG-16以及ResNet-101 3种卷积神经网络分别结合的策略,实验对比了该策略中的3种结合模型方案在BIT-Vehicle和CompCars2种大型车型数据库的车型识别能力。在BIT-Vehicle数据集上,基于Faster-RCNN与ResNet-101结合模型方案的车型识别率高与其余2种结合模型方案,其车型识别率高达91.3%;在迁移测试CompCars数据集上,3种结合模型方案均展现了很好的泛化能力。
关 键 词:车型识别 目标检测 Faster-RCNN 卷积神经网络
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...