期刊文章详细信息
基于加速区域卷积神经网络的夜间行人检测研究
Nighttime Pedestrian Detection Based on Faster Region Convolution Neural Network
文献类型:期刊文章
机构地区:[1]东华大学信息科学与技术学院,上海201620 [2]东华大学数字化纺织服装技术教育部工程研究中心,上海201620 [3]华东理工大学信息科学与工程学院,上海200237
基 金:国家自然科学基金(61375007);上海市科委基础研究项目(15JC1400600)
年 份:2017
卷 号:54
期 号:8
起止页码:117-123
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD2017_2018、IC、JST、RCCSE、SCOPUS、WOS、ZGKJHX、核心刊
摘 要:行人检测是机器人和无人车夜间工作应用中的重要任务之一,采用加速区域卷积神经网络框架实现夜间红外图像中的行人检测,用区域建议网络生成候选区域,无需单独从图像中生成候选区域。区域建议网络和用于分类以及位置精修的卷积网络中,采用卷积层参数共享机制,使得该框架具有端到端的优点,因此无需手动选取目标特征,实现了从输入图像直接到行人检测的功能。实验结果表明,与使用传统方法和快速区域卷积神经网络相比,使用加速区域卷积网络框架对红外图像进行行人检测的准确率从68.2%和73.4%提高到了90.9%,检测时间从3.6s/frame和2.3s/frame缩短到了0.04s/frame,达到了实际应用中的实时性要求。
关 键 词:图像处理 红外图像 行人检测 加速区域卷积神经网络 区域建议网络
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...