期刊文章详细信息
文献类型:期刊文章
Li Hang Tang Chaolan Yang Xian Shen Wanting(School of Computer Science, Guangdong University of Technology, Guangzhou School of Art and Design, Guangdong University of Technology, Guangzhou 510006, 510075)
机构地区:[1]广东工业大学计算机学院,广州510006 [2]广东工业大学艺术与设计学院,广州510075
基 金:广东省部产学研专项资金企业创新平台"面向家电行业的用户数据挖掘系统研究及体验式设计创新服务"(编号:2013B090800042)
年 份:2017
卷 号:36
期 号:8
起止页码:183-187
语 种:中文
收录情况:BDHX、BDHX2014、CSSCI、CSSCI2017_2018、JST、NSSD、RCCSE、RWSKHX、ZGKJHX、核心刊
摘 要:[目的/意义]关键词提取在自然语言处理领域有着广泛的应用,如何快速准确地实现关键词的提取已经成为文本处理的关键问题。目前关键词提取方法非常多,但准确率仍有待提升。为此,提出一种结合单一文档内部结构信息、词语对于单文档和文档集整体的重要性的关键词抽取方法。[方法/过程]首先,根据词语的平均信息熵特征计算词语对文档集整体的重要性,利用词语的词性、位置特征计算词语对单文档中的重要性。然后,通过神经网络训练的方式优化三个特征的权重分配实现特征的融合。最后,利用三个特征计算得到词语的综合权值来改进TextRank模型词汇节点的初始权重以及概率转移矩阵,再通过迭代法实现关键词的抽取。[结果 /结论]该研究方法结合了文档集整体信息和单文档自身信息,其关键词提取的准确率较传统TextRank方法、TFIDF-TextRank方法有了明显的提高。
关 键 词:TextRank算法 关键词抽取 神经网络 平均信息熵
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...