期刊文章详细信息
文献类型:期刊文章
机构地区:[1]天津中德应用技术大学智能制造学院,天津300350 [2]河北工业大学控制科学与工程学院,天津300132
基 金:基金项目:灾难现场大型及多功能破拆装备研发(2015BAK06B00)
年 份:2017
卷 号:24
期 号:7
起止页码:1409-1414
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD_E2017_2018、核心刊
摘 要:针对移动机器人模型的不确定性和非线性,给出了基于反步动力学控制和自适应径向基神经网络(Radial Basis Function Neural Network,RBFNN)调节滑模增益的PI型滑模动态控制(Sliding Mode Control,SMC)的混合算法,以增强对随机不确定性因素的适应性和消除滑模控制输入的抖动现象。并在此基础上,又进一步利用Lyapunov函数证明了控制系统的稳定性,最后给出了仿真结果。仿真结果表明,该控制算法在持续性扰动和不确定性情况下可以平滑控制输入,消除跟踪误差,系统具有快速收敛性,鲁棒性强。
关 键 词:滑模控制 轨迹跟踪 移动机器人 自适应神经网络 LYAPUNOV函数
分 类 号:TP242]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...