期刊文章详细信息
基于高光谱数据的土壤有机质含量反演模型比较 ( EI收录)
Comparison on Inversion Model of Soil Organic Matter Content Based on Hyperspectral Data
文献类型:期刊文章
机构地区:[1]同济大学测绘与地理信息学院,上海200092 [2]山东农业大学信息科学与工程学院,泰安271018
基 金:上海市科学技术委员会科研计划项目(13231203602)
年 份:2017
卷 号:48
期 号:3
起止页码:164-172
语 种:中文
收录情况:BDHX、BDHX2014、CAB、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2017_2018、EI(收录号:20172203711623)、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:以土壤多样化的陕西省横山县为研究区域,比较了3种基于高光谱数据的土壤有机质含量反演模型,在实验室利用ASD Field Spec FR地物光谱仪对横山县野外采集的土壤样品进行光谱测定,并通过重铬酸钾氧化容量法测定土壤有机质含量。然后对原始光谱反射率的倒数进行微分运算获得其一阶导数光谱,将原始光谱反射率、一阶导数光谱分别与土壤有机质含量进行相关性分析,得到相关性系数r较高的特征波段的一阶导数光谱,直接建立基于一阶导数光谱的多元线性逐步回归分析(MLSR)模型。同时针对这些相关性系数较高的特征波段的一阶导数光谱进行主成分分析(Principal component analysis,PCA),利用主成分分析得到的结果分别建立BP神经网络反演模型(PCA-BP)和多元线性逐步回归分析模型(PCA-MLSR)。用上述3种方法进行土壤有机质含量反演,并对3种反演结果进行精度验证与比较。实验分析结果表明:在3种模型中,基于主成分分析结果构建的PCA-BP模型在土壤有机质含量反演中决定系数(R2)最高,为0.893 0,均方根误差(RMSE)为0.118 5%;其次为运用全部主成分PCA分析结果构建的多元线性逐步回归模型,R2为0.740 7,RMSE为0.161 3%;而采用一阶导数光谱反射率构建的多元线性逐步回归模型中,最佳反演模型R2仅为0.689 9,RMSE为0.171 0%。由此说明,PCA-BP模型有机质含量反演精度明显高于多元线性逐步回归模型,利用全部主成分进行多元逐步回归,其有机质含量反演精度优于仅用累计方差贡献率大于90%的主成分进行多元逐步回归的精度,可以更好地反演土壤有机质的含量。
关 键 词:土壤 有机质含量 一阶导数光谱 主成分分析 BP神经网络 多元线性逐步回归
分 类 号:S153.621]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...