期刊文章详细信息
文献类型:期刊文章
机构地区:[1]中国计量大学理学院应用数学系,杭州310018
基 金:国家自然科学基金项目(No.61672477;61571410)资助~~
年 份:2017
卷 号:30
期 号:2
起止页码:97-105
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD2017_2018、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:基于深度学习理论,将图像去噪过程看成神经网络的拟合过程,构造简洁高效的复合卷积神经网络,提出基于复合卷积神经网络的图像去噪算法.算法第1阶段由2个2层的卷积网络构成,分别训练阶段2中的3层卷积网络中的部分初始卷积核,缩短阶段2中网络的训练时间和增强算法的鲁棒性.最后运用阶段2中的卷积网络对新的噪声图像进行有效去噪.实验表明文中算法在峰值信噪比、结构相识度及均方根误差指数上与当前较好的图像去噪算法相当,尤其当噪声加强时效果更佳且训练时间较短.
关 键 词:图像去噪 卷积神经网络 随机梯度下降法
分 类 号:TP391.41] TP183[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...