期刊文章详细信息
文献类型:期刊文章
机构地区:[1]长安大学信息工程学院,西安710064
基 金:国家交通运输部重大科技专项项目(2011318812260)
年 份:2017
卷 号:34
期 号:1
起止页码:91-93
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA-PROQEUST、CSCD、CSCD_E2017_2018、IC、INSPEC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊
摘 要:针对现有预测方法未能充分揭示交通流内部的本质规律,提出了一种基于深度学习的短时交通流预测方法。该方法结合深度信念网路模型(DBN)与支持向量回归分类器(SVR)作为预测模型,利用差分去除交通流数据的趋势向,用深度信念网络模型进行交通流特征学习,在网络顶层连接支持向量回归模型进行流量预测。实际交通流数据测试结果表明,提出的预测模型与传统预测模型相比具有更高的预测精度,预测性能提高了18.01%,是一种有效的交通流预测方法。
关 键 词:交通流预测 深度学习 短时交通流 支持向量回归
分 类 号:TP181]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...