期刊文章详细信息
文献类型:期刊文章
机构地区:[1]国网重庆市电力公司,重庆400015 [2]北京中电普华信息技术有限公司,北京100085
年 份:2016
卷 号:30
期 号:10
起止页码:1558-1567
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD2015_2016、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:目前窃电现象严重且窃电手段先进,但反窃电手段仍以人工稽核为主,存在工作量大、取证困难和缺乏针对性等问题。为了解决上述问题,利用供电企业积累的大量客户档案数据和历史用电数据,通过二阶聚类分析窃电用户的定性特征,用深度学习和CHAID决策树分类评估用户的窃电嫌疑概率,根据异常值分析手段为疑似窃电行为取证提供依据。实践表明,本方案缩小了窃电嫌疑用户范围,减少了防窃电的工作量,提高了稽核针对性,且为供电单位进行窃电侦查提供了依据,从而减少了供电企业财务损失,保障电网运行安全。
关 键 词:反窃电 二阶聚类 深度学习 CHAID决策树 异常分析
分 类 号:TN108.7]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...