登录    注册    忘记密码

期刊文章详细信息

自适应混沌粒子群算法对极限学习机参数的优化    

Optimization of extreme learning machine parameters by adaptive chaotic particle swarm optimization algorithm

  

文献类型:期刊文章

作  者:陈晓青[1] 陆慧娟[1] 郑文斌[1] 严珂[1]

机构地区:[1]中国计量大学信息工程学院,杭州310018

出  处:《计算机应用》

基  金:国家自然科学基金资助项目(61272315);浙江省自然科学基金资助项目(LY14F020041);国家安全总局项目(zhejiang-00062014AQ)~~

年  份:2016

卷  号:36

期  号:11

起止页码:3123-3126

语  种:中文

收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSOELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。

关 键 词:自适应 极限学习机 混沌粒子群 基因分类  

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心