期刊文章详细信息
文献类型:期刊文章
机构地区:[1]沙洲职业工学院电子信息工程系,江苏苏州215600 [2]Rutgers大学数学系,美国新泽西08817 [3]苏州大学计算机科学与技术学院,江苏苏州215006
基 金:国家自然科学基金项目(61003155;61273320)资助
年 份:2016
卷 号:37
期 号:11
起止页码:2454-2458
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:面向公共媒体内容开展情感分析是分析公众情感的一项基础工作.经典的基于词频特征向量的特征提取方法,主要利用词频作为文本分类的依据,而词频与情感信息之间的关系并不紧密.提出一种采用基于情感特征向量的Twitter推文情感分类方法.该方法首先通过对推文进行数据清洗、词形还原、词性标注和词汇向量化;其次,将单词匹配到情感词典中;最后,利用每个单词的正向情感、负向情感取值生成情感特征向量,通过MNB、SVM等机器学习方法训练模型,对推文的情感进行分类.实验结果表明采用情感特征向量的Twitter推文情感分类方法能够获得更佳的分类性能.
关 键 词:推文 情感分类 情感词典 情感特征向量
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...