登录    注册    忘记密码

期刊文章详细信息

基于深度信念网络的个性化信息推荐    

Personalized Information Recommendation Based on Deep Belief Network

  

文献类型:期刊文章

作  者:王兆凯[1] 李亚星[1] 冯旭鹏[2] 刘利军[1] 黄青松[1,3] 刘晓梅[4]

机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500 [2]昆明理工大学教育技术与网络中心,昆明650500 [3]云南省计算机技术应用重点实验室,昆明650500 [4]昆明佳谦科技有限公司,昆明650500

出  处:《计算机工程》

基  金:国家自然科学基金资助项目(81360230);科技部科技型中小企业技术创新基金资助项目(13C26215305404)

年  份:2016

卷  号:42

期  号:10

起止页码:201-206

语  种:中文

收录情况:AJ、BDHX、BDHX2014、CAS、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊

摘  要:为在信息推荐过程中挖掘出更多的信息关系,提出一种基于深度信念网络的信息推荐方法。利用模糊聚类进行预处理以达到跨类推荐的目的,根据用户浏览记录通过网络计算高分信息,并结合用户兴趣,使用潜在狄里克雷分配模型对高分信息进行权值调整,从而提高推荐准确率。在整个推荐过程中网络会根据用户行为对推荐信息权值进行相应调整。实验结果表明,该方法的推荐成功率比BP神经网络提高5.7%。

关 键 词:信息推荐 深度学习  深度信念网络  潜在狄利克雷分配模型  模糊聚类

分 类 号:TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心