期刊文章详细信息
文献类型:期刊文章
CAO Ru-sheng NI Shi-hong ZHANG Peng XI Xian-yang(College of Aeronautics and Astronautics Engineering, Air Force Engineering University,Xi' an 710038, China Chinese People's Liberation Army 95880 Troops,Beijing 100095,China)
机构地区:[1]空军工程大学航空航天工程学院 [2]中国人民解放军95881部队
年 份:2016
卷 号:43
期 号:8
起止页码:194-198
语 种:中文
收录情况:BDHX、BDHX2014、CSA、CSCD、CSCD_E2015_2016、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:针对贝叶斯网络连续节点离散化后,概念知识表达存在模糊性和随机性的问题,提出一种将云模型与EM(Expectations Maximization)算法相结合的贝叶斯网络参数学习算法。首先运用启发式高斯云变换算法(Heuristic Gaussian Cloud Transformation)和云发生器将连续节点定量样本转换成定性概念,并记录下样本对所属概念的确定度,运用确定度概率转换公式将确定度转换成相应概率;随后复制扩充样本并按概率选择所属概念;样本更新后结合EM算法进行参数优化,实现贝叶斯网络的参数学习。仿真实验结果表明,通过云模型表征概念得到的参数学习结果更加符合实际情况,参数学习精度和网络推理准确性得到了提高。
关 键 词:云模型 贝叶斯网络 参数学习 离散化
分 类 号:TP181]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...