登录    注册    忘记密码

期刊文章详细信息

多目标车辆路径问题的粒子群优化算法研究  ( EI收录)  

A Novel Particle Swarm Optimization for Multi-Objective Vehicle Routing Problem

  

文献类型:期刊文章

作  者:郭森[1] 秦贵和[1,2] 张晋东[1] 于赫[1] 卢政宇[1] 于佳欣[3]

机构地区:[1]吉林大学计算机科学与技术学院,长春130012 [2]吉林大学符号计算与知识工程教育部重点实验室,长春130012 [3]吉林大学软件学院,长春130012

出  处:《西安交通大学学报》

基  金:国家自然科学基金资助项目(51205154);吉林省科技发展计划资助项目(20140520073JH);吉林省重点科技攻关资助项目(2015020434);中央大学基础研究基金资助项目(JCKY-QKJC14)

年  份:2016

卷  号:50

期  号:9

起止页码:97-104

语  种:中文

收录情况:BDHX、BDHX2014、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、EI(收录号:20163802829261)、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊

摘  要:针对粒子群算法(PSO)及其变种在约束多目标等复杂问题优化过程中所遇到的易陷入局部最优和收敛性问题,提出了一种基于动态学习和突变因子的粒子群算法(DSPSO)。首先,通过分析粒子群群体的学习机制,采用动态的学习策略,使粒子自适应动态调整认知成分和社会成分在迭代更新中的权重,以引导自身向最优解的方向探索,有效改善了群体的收敛速度;其次,通过引入阶梯突变因子的概念,使粒子在陷入局部最优时进行试探跳跃,阶梯突变赋予粒子突破更新步长限制的能力,使粒子在当前位置速度矢量方向上的二维空间邻域内进行试探寻优,当发现更优解时则跳出当前局部最优;最后,通过在BenchMark基准函数测试集中典型函数上的实验,证明了DSPSO的求解精度和收敛速度均优于对比算法。在多目标车辆路径问题实例优化中,解的可接受率和成功率分别为0.91和0.66,远优于对比算法中最优解的0.16和0.11,体现了所提改进算法在车辆路径问题中的优越性。

关 键 词:车辆路径问题 多目标优化 粒子群

分 类 号:TP273]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心