期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京理工大学软件学院,数字表演与仿真技术实验室,北京100081
基 金:国家自然科学基金资助项目(61202243);国家教育部高等学校博士学科点专项科研基金资助项目(20121101110037);江西省自然科学基金资助项目(20151BAB207042)
年 份:2016
卷 号:36
期 号:5
起止页码:502-507
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、EI、IC、INSPEC、JST、MR、RCCSE、RSC、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:针对储备池的适应性问题,提出了一种复合回声状态网络模型(CESN).CESN依据增量生长准则构建小世界无标度进化状态储备池,解除了储备池谱半径的限制.同时,CESN将离散小波函数作为神经元的激活函数,用Symlets小波函数替代部分储备池神经元的S型函数,Symlets小波函数的伸缩和平移变换特征丰富了动态储备池的状态空间.将CESN应用于一些非线性时间序列逼近问题中,即NARMA系统、Henon映射和二氧化碳浓度预测.实验结果表明,在逼近高度复杂的非线性系统方面,CESN明显优于注入Symlets小波的经典回声状态网络(SESN)和具有高聚类系数的无标度回声状态网络(SHESN).
关 键 词:回声状态网络 小世界 无标度 小波函数 时间序列预测
分 类 号:TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...