登录    注册    忘记密码

期刊文章详细信息

基于信息熵改进的K-means动态聚类算法    

Improved K- means dynamic clustering algorithm based on information entropy

  

文献类型:期刊文章

作  者:杨玉梅[1]

机构地区:[1]川北医学院图书馆,四川南充637000

出  处:《重庆邮电大学学报(自然科学版)》

年  份:2016

卷  号:28

期  号:2

起止页码:254-259

语  种:中文

收录情况:BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题。因此,提出一个改进的K-means算法。改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果。实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升。

关 键 词:K-MEANS算法 信息熵 数据挖掘 动态聚类

分 类 号:TP301]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心