期刊文章详细信息
文献类型:期刊文章
机构地区:[1]武汉科技大学计算机科学与技术学院,武汉430065 [2]智能信息处理与实时工业系统湖北省重点实验室,武汉430065
基 金:国家自然科学基金资助项目(61273225);国家科技支撑计划项目(2012BAC22B01)~~
年 份:2016
卷 号:36
期 号:3
起止页码:697-702
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊
摘 要:为了提高自动编码器算法的学习精度,更进一步降低分类任务的分类错误率,提出一种组合稀疏自动编码器(SAE)和边缘降噪自动编码器(m DAE)从而形成稀疏边缘降噪自动编码器(Sm DAE)的方法,将稀疏自动编码器和边缘降噪自动编码器的限制条件加载到一个自动编码器(AE)之上,使得这个自动编码器同时具有稀疏自动编码器的稀疏性约束条件和边缘降噪自动编码器的边缘降噪约束条件,提高自动编码器算法的学习能力。实验表明,稀疏边缘降噪自动编码器在多个分类任务上的学习精度都高于稀疏自动编码器和边缘降噪自动编码器的分类效果;与卷积神经网络(CNN)的对比实验也表明融入了边缘降噪限制条件,而且更加鲁棒的Sm DAE模型的分类精度比CNN还要好。
关 键 词:深度学习 自动编码器 稀疏自动编码器 降噪自动编码器 卷积神经网络
分 类 号:TN392]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...