登录    注册    忘记密码

期刊文章详细信息

结合SVM分类器与HOG特征提取的行人检测    

Pedestrian Detection Combining with SVM Classifier and HOG Feature Extraction

  

文献类型:期刊文章

作  者:徐渊[1] 许晓亮[1] 李才年[1] 姜梅[1] 张建国[2]

机构地区:[1]深圳大学信息工程学院,广东深圳518060 [2]深圳市振华微电子有限公司,广东深圳518060

出  处:《计算机工程》

基  金:深圳市战略新兴产业发展专项基金资助项目"神经形态学视觉芯片模型研究及仿真"(JCYJ20140418095735603)

年  份:2016

卷  号:42

期  号:1

起止页码:56-60

语  种:中文

收录情况:AJ、BDHX、BDHX2014、CAS、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊

摘  要:针对基于方向梯度直方图(HOG)的行人检测方案存在运算量大、实时性差的问题,设计一个内嵌支持向量机(SVM)分类器的HOG特征提取归一化模块,并将其应用于行人检测。提出两级流水线架构,第1级采用16×16像素块扫描,并结合查找表的方式生成HOG,以减少乘法器资源消耗量,第2级将15路并行SVM内嵌到HOG归一化模块中,通过提前启动SVM降低15路SVM乘累加器的位宽。利用面向硬件实现的自动消除检测重复性算法,进一步提高检测准确性。实验结果表明,该方案能够以100 MHz时钟频率运行在Spartan6 FPGA芯片上,每秒可处理47帧SVGA(800×600)分辨率的图像,具有较高的行人检测实时性和准确率。

关 键 词:现场可编程门阵列 流水线  查找表 方向梯度直方图 支持向量机  

分 类 号:TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心