期刊文章详细信息
文献类型:期刊文章
机构地区:[1]武汉大学计算机学院,武汉430072 [2]桂林航天工业学院广西高校机器人与焊接技术重点实验室培育基地,广西桂林541004
基 金:国家自然科学基金资助项目(11301106);广西自然科学基金资助项目(2014GXNSFAA1183105);广西高校科研资助项目(ZD2014147;YB2014431)~~
年 份:2016
卷 号:36
期 号:1
起止页码:154-157
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊
摘 要:针对现有广告短语相关性研究成果多采用字面匹配,忽略了短语所包含的深层语义信息,限制了任务的性能等问题,提出了采用深度学习算法研究广告短语的相关性,采用递归自编码器(RAE)对短语进行深层结构分析,使得短语向量包含深层的语义信息,以此来构建广告语境下的短语相关性计算方法。具体地,给定一个包含若干词的序列,序列中所有相邻的两个元素尝试合并产生一个重构误差,遍历将重构误差最小的元素两两合并,形成类似哈夫曼树结构的短语树。采用梯度下降法最小化短语树的重构误差,采用余弦距离度量短语之间的相关性。实验结果显示,通过引入词语权重信息,加大了重要词语在最终短语向量表示中贡献的信息量,使得RAE更适合短语计算;比起传统LDA和BM25算法,在50%召回率的条件下,提出的算法的准确率分别提高了4.59个百分点和3.21个百分点,这证明了所提算法的有效性。
关 键 词:深度学习 递归自编码器 词向量 计算广告 搜索引擎
分 类 号:TP391] TP181[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...