期刊文章详细信息
文献类型:期刊文章
机构地区:[1]山东师范大学信息科学与工程学院,济南250014 [2]山东省分布式计算机软件新技术重点实验室,济南250014
基 金:山东省优秀中青年科学家科研奖励基金项目(2010BSE14022)资助
年 份:2016
卷 号:37
期 号:1
起止页码:48-52
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:推荐系统是解决信息过载问题的有效方法,而协同过滤通过挖掘用户行为信息来预测用户偏好,是现今广泛应用的推荐方法.但传统的协同过滤算法存在数据稀疏,推荐精度不高的问题.而标签信息能够丰富用户(资源)之间的联系,从而提高推荐精度.通过标签信息来构造用户和资源的特征矩阵,进一步融合到基于邻域的协同过滤推荐算法中,预测用户对资源的评分.同时考虑了用户评分的时间上下文影响,降低预测误差.在真实的数据集上验证,该推荐算法与传统协同过滤算法相比,有效的预测用户评分,提高推荐精度.
关 键 词:协同过滤 标签特征 时间上下文
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...