登录    注册    忘记密码

期刊文章详细信息

融合标签特征和时间上下文的协同过滤推荐算法    

Collaborative Filtering Fusing Label Features and Time Context

  

文献类型:期刊文章

作  者:窦羚源[1] 王新华[1,2] 孙克[1]

机构地区:[1]山东师范大学信息科学与工程学院,济南250014 [2]山东省分布式计算机软件新技术重点实验室,济南250014

出  处:《小型微型计算机系统》

基  金:山东省优秀中青年科学家科研奖励基金项目(2010BSE14022)资助

年  份:2016

卷  号:37

期  号:1

起止页码:48-52

语  种:中文

收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:推荐系统是解决信息过载问题的有效方法,而协同过滤通过挖掘用户行为信息来预测用户偏好,是现今广泛应用的推荐方法.但传统的协同过滤算法存在数据稀疏,推荐精度不高的问题.而标签信息能够丰富用户(资源)之间的联系,从而提高推荐精度.通过标签信息来构造用户和资源的特征矩阵,进一步融合到基于邻域的协同过滤推荐算法中,预测用户对资源的评分.同时考虑了用户评分的时间上下文影响,降低预测误差.在真实的数据集上验证,该推荐算法与传统协同过滤算法相比,有效的预测用户评分,提高推荐精度.

关 键 词:协同过滤 标签特征  时间上下文  

分 类 号:TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心