期刊文章详细信息
基于油液光谱RKPCA的综合传动磨损状态评价(英文) ( EI收录 SCI收录)
Research and Evaluation on Wear in Power-Shift Steering Transmission Through Oil Spectral Analysis with RKPCA Method
文献类型:期刊文章
机构地区:[1]北京理工大学机械与车辆学院,北京100081 [2]中北大学机械与动力工程学院,山西太原030051 [3]中国石油集团济柴动力总厂,山东济南250306
基 金:National Natural Science Foundation of China(51475044)
年 份:2015
卷 号:35
期 号:5
起止页码:1370-1375
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CAS、CSCD、CSCD2015_2016、EI(收录号:20152300916492)、IC、INSPEC、JST、PUBMED、RCCSE、RSC、SCI(收录号:WOS:000354142900045)、SCI-EXPANDED(收录号:WOS:000354142900045)、SCIE、SCOPUS、WOS、ZGKJHX、核心刊
摘 要:原子发射光谱是分析油液中微小磨损颗粒元素浓度的重要方法。以综合传动全寿命磨损试验不同阶段采集的多个油液样本为研究对象,分别运用基于模糊隶属度的稳健核主成分分析(RKPCA)与传统主成分分析(PCA)对光谱数据进行主成分提取与对比。在剔除光谱数据中的干扰元素后,计算与比较两种方法的主成分数量与贡献率,并利用RKPCA主成分进行综合传动多摩擦副的分类识别;对光谱数据和RKPCA特征值分别进行模糊C均值聚类,对比两种聚类结果应用在磨损状态评价中的效果。研究表明,由于光谱数据离群值与非线性影响,RKPCA较PCA的主成分数量稍小且累积贡献率高,说明前者能更有效地降低变量维数;通过RKPCA主成分与摩擦副组件的相关性分析可以看出,该方法可以精确的实现综合传动多摩擦副、多磨损部位的分类与识别,进而分类评价不同摩擦副的磨损状态;RKPCA特征值的模糊C均值聚类结果与光谱数据直接聚类结果相比,前者能更精确的定位磨损状态转化的临界点,从而准确评价综合传动整体磨损状态。油液光谱RKPCA分析方法的创新在于将特征值变化规律引入整体磨损状态评价,实现整体评价与关键摩擦副的分类评价相结合。这样不仅有助于综合传动大修期的准确判断,还能给出需维修部件建议。该方法也适用于其他复杂机械系统的磨损监测与评价等相关领域。
关 键 词:油液光谱分析 RKPCA 综合传动 磨损状态
分 类 号:O657.3]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...