期刊文章详细信息
文献类型:期刊文章
机构地区:[1]东南大学计算机科学与工程学院,南京210096 [2]江苏省计算机网络技术重点实验室,南京210096
年 份:2015
卷 号:47
期 号:6
起止页码:924-930
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、EI、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:Webshell是一种基于Web的网站后门程序。当前已有的Webshell检测方法都需要根据脚本程序源代码来检测,因此只能部署在服务器主机上,而且只能检测本机的网站代码。本文通过分析Webshell的HTML页面特征,提出了一种基于支持向量机(Support vector machine,SVM)分类算法的黑盒检测方法。该方法是一种有监督的机器学习系统,对先验网页的HTML页面进行学习,可以在未知脚本源代码的情况下对Webshell进行检测。实现结果表明,该方法在黑盒的条件下达到了较高的准确率和极低的误报率,并且取得了与白盒检测方法相近的检出率,可以部署在基于网络的入侵检测系统中,同时监测多台服务器是否包含Webshell,从而帮助监控入侵趋势和网络安全态势。
关 键 词:WEBSHELL 网站后门 支持向量机 入侵检测 机器学习
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...