期刊文章详细信息
文献类型:期刊文章
机构地区:[1]西北工业大学管理学院管理科学与工程系,西安710129
基 金:国家自然科学基金(No.71103138);陕西省软科学项目(No.2014KRM28-01)
年 份:2015
卷 号:51
期 号:22
起止页码:28-32
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:为增加向量空间模型的文本语义信息,提出三元组依存关系特征构建方法,将此方法用于文本情感分类任务中。三元组依存关系特征构建方法在得到完整依存解析树的基础上,先依据中文语法特点,制定相应规则对原有完整树进行冗余结点的合并和删除;再将保留的依存树转化为三元组关系并一般化后作为向量空间模型特征项。为了验证此种特征表示方法的有效性,构造出在一元词基础上添加句法特征、简单依存关系特征和词典得分不同组合下的特征向量空间。将三元组依存关系特征向量与构造出的不同组合特征向量分别用于支持向量机和深度信念网络中。结果表明,三元组依存关系文本表示方法在分类精度上均高于其他特征组合表示方法,进一步说明三元组依存关系特征能更充分表达文本语义信息。
关 键 词:依存句法解析 文本情感分类 向量空间模型 深度信念网络
分 类 号:TP391.1]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...