期刊文章详细信息
文献类型:期刊文章
机构地区:[1]合肥工业大学计算机与信息学院图像信息处理研究室,合肥230009
基 金:国家自然科学基金(61273237);安徽省自然科学基金资助课题(11040606M149)资助项目
年 份:2015
卷 号:29
期 号:10
起止页码:1431-1439
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD2015_2016、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对目标类内差异、类间相似的识别问题,结合RGB图像和Depth图像各自的优势,提出一种基于多核学习的融合RGB特征和Depth特征的3D目标识别方法。该方法提取目标物体的RGB特征和Depth特征;并根据两种特征的类内、类间相似性均值和方差,为特征自适应的分配不同的权重;最后利用多核学习(MKL)的方法对特征进行加权融合,并结合SVM分类器,实现3D目标识别。最后通过在Kinect相机得到的RGB-D数据集上进行实验,验证了该文方法能够有效地实现对RGB特征和Depth特征的融合,很好的解决类内差异、类间相似的3D目标识别问题,提高了3D目标识别的识别率。
关 键 词:3D目标识别 多核学习 特征融合 自适应加权 Kinect相机
分 类 号:TP391.9]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...