期刊文章详细信息
基于AWLS-SVM的污水处理过程软测量建模 ( EI收录)
Soft sensor modeling for wastewater treatment process based on adaptive weighted least squares support vector machines
文献类型:期刊文章
机构地区:[1]福州大学石油化工学院,福州350108 [2]南京理工大学机械工程学院,南京210094
基 金:国家自然科学基金(61374133);高等学校博士学科点专项科研基金(20133514120004)项目资助
年 份:2015
卷 号:36
期 号:8
起止页码:1792-1800
语 种:中文
收录情况:BDHX、BDHX2014、CAS、CSCD、CSCD2015_2016、EI(收录号:20153901309398)、IC、INSPEC、JST、RCCSE、RSC、SCOPUS、ZGKJHX、核心刊
摘 要:针对污水处理过程建模中样本数据可能存在的测量误差对模型性能的影响,提出一种自适应加权最小二乘支持向量机(AWLS-SVM)回归的软测量建模方法。该方法基于最小二乘支持向量机模型,根据样本拟合误差,并结合改进的指数分布赋权规则,自适应地为每个建模样本分配不同的权值,以降低随机误差对模型性能的影响;同时采用一种全局优化算法——混沌粒子群模拟退火(CPSO-SA)算法对最小二乘支持向量机的模型参数进行优化选择,以提高模型的泛化能力。仿真实验表明,AWLS-SVM模型的预测精度及鲁棒性能优于LS-SVM和WLS-SVM。最后,应用AWLS-SVM方法建立污水处理过程出水水质关键参数的软测量模型,获得了较好的效果。
关 键 词:最小二乘支持向量机 污水处理过程 污水出水水质 混沌粒子群 模拟退火 软测量建模
分 类 号:TP181] TH86]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...