期刊文章详细信息
基于遗传算法改进极限学习机的变压器故障诊断
Fault Diagnosis of Transformer Based on Extreme Learning Machine Optimized by Genetic Algorithm
文献类型:期刊文章
机构地区:[1]西南交通大学电气工程学院,成都610031 [2]国网四川省电力公司成都供电公司,成都610041
基 金:国家自然科学基金高铁联合基金重点项目(U1134205);国网四川省电力公司项目~~
年 份:2015
卷 号:51
期 号:8
起止页码:49-53
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CAS、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对变压器故障的特征,结合变压器油中气体分析法以及三比值法,提出了基于遗传算法改进极限学习机的故障诊断方法。由于输入层与隐含层的权值和阈值是随机产生,传统的极限学习机可能会使隐含层节点过多,训练过程中容易产生过拟合现象。该方法运用遗传算法对极限学习机的输入层与隐含层的权值与阈值进行优化,从而提高模型的稳定性和预测精度。将诊断结果与传统的基于极限学习机故障诊断进行对比,结果表明,基于遗传算法改进极限学习机变压器故障诊断的精度更高。
关 键 词:变压器 三比值法 遗传算法 极限学习机 故障诊断
分 类 号:TM407]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...