期刊文章详细信息
车载网络中基于移动轨迹预测的快速邻居发现算法
Fast neighbor discovery scheme based on mobility prediction in vehicular networks
文献类型:期刊文章
机构地区:[1]天津大学计算机科学与技术学院天津市认知计算与应用重点实验室,天津300072
基 金:国家自然科学基金资助项目(61363081);天津大学自主创新基金资助项目(60305007)
年 份:2015
卷 号:32
期 号:9
起止页码:2737-2741
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊
摘 要:车辆网络中节点的快速移动导致网络拓扑频繁变化,快速的邻居发现算法成为影响网络协议性能的重要因素。针对该问题,提出了一种新型的基于卡尔曼滤波器移动轨迹预测的Hello协议,即KFH(Kalman filterbased Hello protocol)。每个节点使用一个基于自适应卡尔曼滤波器的预测模型来预测自己的运动轨迹,当节点预测下一个时隙的位置时,同时也对邻居表中的每个邻居进行预测。如果节点的位置预测精度大于一定的阈值,将广播一个包含自己真实位置的hello消息,接收到该探测信息的节点将更新自己邻居表中相应的模型参数。仿真结果表明,KFH可以实现高效率的邻居发现,提高Hello协议的性能。在同样网络开销情况下,KFH具有最低的邻居发现错误率(只有2%)及邻居发现延迟。
关 键 词:车辆自组织网络 邻居发现 移动预测 卡尔曼滤波
分 类 号:TP399] TP301.6[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...