期刊文章详细信息
文献类型:期刊文章
机构地区:[1]福州大学信息化建设办公室 [2]福建省超级计算中心
基 金:福建省自然科学基金(2010J05133)
年 份:2015
卷 号:29
期 号:3
起止页码:150-154
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD2015_2016、JST、RCCSE、ZGKJHX、核心刊
摘 要:目前的产品垃圾评论识别方法只考虑评论特征的选取,忽略了评论数据集的不平衡性。因此该文提出基于随机森林的产品垃圾评论识别方法,即对样本中的大、小类有放回的重复抽取同样数量样本或者给大、小类总体样本赋予同样的权重以建立随机森林模型。通过对亚马逊数据集的实验结果表明,基于随机森林的产品评论识别方法优于其他基线方法。
关 键 词:产品垃圾评论 不平衡问题 随机森林
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...