期刊文章详细信息
针对动态非平衡数据集鲁棒的在线极端学习机 ( EI收录)
An Algorithm of Robust Online Extreme Learning Machine for Dynamic Imbalanced Datasets
文献类型:期刊文章
机构地区:[1]大连理工大学电子信息与电气工程学部计算机科学与技术学院,辽宁大连116024 [2]大连理工大学创新实验学院,辽宁大连116024
基 金:国家自然科学基金项目(61173163;51105052;61370200)
年 份:2015
卷 号:52
期 号:7
起止页码:1487-1498
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA-PROQEUST、CSCD、CSCD2015_2016、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:动态数据存在数据量动态改变,数据类别分布非平衡、不稳定等问题,这些问题成为分类的难点.针对该问题,通过对在线极端学习机模型进行拓展,提出鲁棒的权值在线极端学习机算法.为解决动态数据非平衡性,该算法借助代价敏感学习理论生成局部动态权值矩阵,从而优化分类模型产生的经验风险.同时,算法进一步考虑动态数据由于时序性质改变造成的数据分布变化,而引入遗忘因子增强分类器对数据分布变更的敏感性.算法在不同数据分布的24个非平衡动态数据集上测试,取得了较好的效果.
关 键 词:非平衡数据集 极端学习机 在线极端学习机 代价敏感学习 遗忘因子
分 类 号:TP181]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...