期刊文章详细信息
相关向量机超参数优化的网络安全态势预测
Network security situation prediction based on hyper parameter optimization of relevance vector machine
文献类型:期刊文章
机构地区:[1]昆明理工大学质量发展研究院,昆明650093
基 金:国家自然科学基金资助项目(61364016);云南省应用基础研究计划项目(2014FB136)
年 份:2015
卷 号:35
期 号:7
起止页码:1888-1891
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊
摘 要:针对当前网络安全态势预测方法存在的过学习与欠学习、自由参数多、预测精度不高等问题,提出使用一种改进模拟退火法优化的相关向量机模型(PSA-RVM)来解决网络安全态势预测问题。在预测过程中,首先对网络安全态势样本数据进行相空间重构形成训练样本集;然后,利用Powell算法改进模拟退火(PSA)法,并将相关向量机(RVM)嵌入到PSA算法的目标函数计算过程中,优化RVM超参数,以得到学习能力、预测精度提升的网络安全态势预测模型。仿真实例表明,所提方法具有较高的预测精度,平均相对误差(MAPE)和均方根误差(RMSE)分别为0.392 56和0.012 61,均优于Elman和PSO-SVR模型;所提方法能够较好地刻画网络安全态势的变化趋势,有助于网络管理人员把握未来网络安全态势发展趋势,从而提前主动采取相应的网络防御措施。
关 键 词:网络安全态势 相关向量机 POWELL算法 模拟退火 预测 超参数
分 类 号:TP393.08]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...