期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044 [2]金日成综合大学数字图书馆
基 金:中央高校科研业务经费项目(No.2014YJS036)资助
年 份:2015
卷 号:28
期 号:5
起止页码:452-461
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD2015_2016、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:模糊C均值(FCM)聚类算法最终形成的聚类质量会受到初始值的设定、簇的个数选定及参数选择等多方面因素的影响.文中对最近发表的5种代表性聚类有效性指数在不同的数据维数、聚类个数和参数等条件下对FCM的聚类有效性评价结果进行对比分析.实验结果表明基于类内紧致度和类间离散度比值的聚类有效性指数对数据维度及噪声较为鲁棒,基于隶属度的聚类有效性指数不适于高维数据等,上述结果可帮助研究人员在不同的应用环境下选择合适的模糊聚类有效性函数.
关 键 词:聚类算法 有效性指数 模糊C均值(FCM)
分 类 号:TP311.13]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...