期刊文章详细信息
文献类型:期刊文章
机构地区:[1]复旦大学计算机科学技术学院,上海视频技术与系统工程研究中心 [2]SAP中国研究院 [3]公安部第三研究所
基 金:国家科技支撑计划(2013BAH09F01);上海市科委科技创新行动计划(14511106900)
年 份:2015
卷 号:31
期 号:4
起止页码:1-3
语 种:中文
收录情况:ZGKJHX、普通刊
摘 要:针对传统视觉词袋模型只考虑兴趣点出现的频率而忽略了局部特征空间信息的问题,提出了一种基于空间金字塔模型的新的图像特征。该特征在标准视觉词袋模型基础上,通过计算属于同一码字的兴趣点对之间的距离,加入了不同码字包含的兴趣点在图像上的空间分布。更结合空间金字塔模型,聚合不同分层过程中提取的特征,更大程度上考虑了空间信息,从而加强了特征对图像内容信息的表示能力。实验结果表明,与传统的词袋模型和金字塔模型相比,具有更高的精准度和分类性能。
关 键 词:场景分类 视觉词袋模型 兴趣点 金字塔模型
分 类 号:TP311]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...