期刊文章详细信息
文献类型:期刊文章
机构地区:[1]安徽工程大学数理学院,安徽芜湖241000
基 金:国家自然科学基金(No.10826098;No.71171003);安徽工程科技学院青年基金资助项目(No.2008YQ038);安徽省自然科学基金资助项目(No.090416225);安徽高校自然科学基金资助项目(No.KJ2010A037)
年 份:2015
卷 号:51
期 号:4
起止页码:133-137
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:支持向量机(SVM)的核函数类型和超参数对预测的精度有重要影响。由于局部核函数学习能力强、泛化性能弱,而全局核函数泛化性能强、学习能力弱的矛盾,通过综合两类核函数各自优点构造了基于全局多项式核和高斯核的混合核函数,并引入果蝇优化算法(FOA)对最小二乘支持向量机(LSSVM)参数进行全局寻优,提出了混合核函数FOA-LSSVM预测模型。结果表明,该模型较传统方法在电力负荷预测精度上有了明显提高,预测结果科学可靠,在预测中具有良好的实际应用价值。
关 键 词:预测 果蝇优化算法(FOA) 最小二乘支持向量机(LSSVM) 混合核
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...