登录    注册    忘记密码

期刊文章详细信息

基于Hadoop的仿射传播大数据聚类分析方法    

Affinity propagation clustering for big data based on Hadoop

  

文献类型:期刊文章

作  者:唐东明[1]

机构地区:[1]西南交通大学信息化研究院,成都610031

出  处:《计算机工程与应用》

基  金:国家自然科学基金(No.61100118;No.61003142;No.61373009);中央高校基本科研业务费专项资金资助(No.2682014CX100)

年  份:2015

卷  号:51

期  号:4

起止页码:29-34

语  种:中文

收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD_E2015_2016、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊

摘  要:仿射传播聚类算法(AP)是一个新的聚类分析方法,已经被广泛应用于各种领域。APC算法不能用于大型数据的分析。为了克服这个限制,在Hadoop分布式框架的基础上提出一种改进的放射传播聚类分析方法(基于Hadoop的仿射传播大数据聚类分析方法,简称APCH)。通过在Hadoop环境下重新设计算法流程,APCH算法成为了一个并行化的大数据聚类分析方法。此外APCH算法能够高效操作大数据,并能够直接决定聚类的个数。为了验证方法的性能,在多个数据集上进行了实验。实验结果表明APCH对大数据处理有很好的适应性和延展性。APCH采用开源的方式提供可执行软件程序和源代码,用户可以下载后部署在自己的分布式集群中或者是部署在亚马逊EC2等云计算环境中。所有编译后的执行程序,源代码,用户手册,部分测试数据集均可以从https://github.com/Hello World CN/Map Reduce APC上下载。

关 键 词:仿射传播聚类 MAP REDUCE HADOOP 键值存储  大数据

分 类 号:TP18]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心