登录    注册    忘记密码

期刊文章详细信息

电力用户侧大数据分析与并行负荷预测  ( EI收录)  

Big Data Analysis and Parallel Load Forecasting of Electric Power User Side

  

文献类型:期刊文章

作  者:王德文[1] 孙志伟[1]

机构地区:[1]华北电力大学控制与计算机工程学院,河北省保定市071003

出  处:《中国电机工程学报》

基  金:国家自然科学基金项目(61074078);中央高校基本科研业务费专项资金资助项目(12MS113)~~

年  份:2015

卷  号:35

期  号:3

起止页码:527-537

语  种:中文

收录情况:AJ、BDHX、BDHX2014、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、EI、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊

摘  要:随着智能电网、通信网络技术和传感器技术的发展,电力用户侧数据呈指数级增长、复杂程度增大,逐步构成了用户侧大数据。传统的数据分析模式已无法满足需求,迫切需要解决电力用户侧的大数据在分析与处理方面的难题。该文分析电力用户大数据的来源,针对电力用户侧大数据的数据量大、种类繁多与速度快等特点,指出电力用户侧的大数据在数据存储、可用性、处理等方面面临的挑战。结合云计算技术提出一种电力用户侧大数据分析处理平台,将智能电表、SCADA系统和各种传感器中采集的数据整合,并利用并行化计算模型Map Reduce与内存并行化计算框架Spark对电力用户侧的大数据进行分析。提出基于随机森林算法的并行负荷预测方法,将随机森林算法进行并行化,对历史负荷、温度、风速等数据进行并行化分析,缩短负荷预测时间和提高随机森林算法对大数据的处理能力。设计并实现基于Hadoop的电力用户侧大数据并行负荷预测原型系统,包括数据集群的管理、数据管理、预测分类算法库等功能。采用不同大小的数据集对并行化随机森林算法进行负荷预测实验,实验结果表明,并行化随机森林算法的预测精度明显高于决策树的预测精度,且在不同数据集上预测精度普遍高于决策树的预测精度,能够较好的对大数据进行分析处理。

关 键 词:大数据 电力用户侧  负荷预测 并行处理 云计算

分 类 号:TM76]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心