期刊文章详细信息
文献类型:期刊文章
机构地区:[1]辽宁工程技术大学矿业学院,辽宁阜新123000 [2]辽宁工程技术大学党政办公室,辽宁阜新123000
基 金:辽宁工程技术大学博士启动基金
年 份:2014
卷 号:10
期 号:11
起止页码:90-93
语 种:中文
收录情况:CAS、CSA、CSCD、CSCD2013_2014、IC、JST、RCCSE、ZGKJHX、普通刊
摘 要:矿井涌水量预测对矿山的安全生产和地下水资源的保护都有着重要意义。将广义回归神经网络(GRNN)引入到矿井涌水量预测中,以实例为研究基础,提出采用GRNN对矿井涌水量预测问题进行建模,将大气降水、采空区面积和底板构造断裂及采动裂隙三个影响因子作为网络输入,涌水量作为预测输出,采取交叉验证方法获得光滑因子来建立预测模型。预测结果表明,GRNN模型的预测值与真实值的最大相对误差仅为4.27%,而BP神经网络预测的最大相对误差为10.48%。同时,减少训练样本数量,即应用于小样本预测问题时,GRNN模型的预测结果较BP神经网络精度高且稳定性好。因此,应用GRNN模型进行矿井涌水量预测是准确的、可行的。
关 键 词:矿井涌水量 预测 广义回归神经网络
分 类 号:X936[安全科学与工程类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...