期刊文章详细信息
文献类型:期刊文章
机构地区:[1]重庆邮电大学移通学院计算机科学系,重庆401520 [2]重庆邮电大学计算机科学与技术学院,重庆400065
基 金:国家自然科学基金资助项目(60842003)
年 份:2014
卷 号:31
期 号:9
起止页码:2853-2855
语 种:中文
收录情况:AJ、BDHX、BDHX2011、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊
摘 要:针对传统的人脸识别算法在处理单样本人脸识别时由于训练样本不足而影响识别率的问题,提出了一种基于分块聚类的多流形判别分析(MMDA)算法。将每个单训练样本划分成若干大小相等且互不重叠的局部小块,利用聚类算法将局部小块聚类到各个类所属的流形上,并使用特征变换最大化类与类之间的分离性;最后,计算出测试人脸的流形与所有训练样本流形之间的距离,采用最近邻分类器完成人脸的识别。在ORL及FERET两大人脸数据库上的实验验证了算法的有效性及可靠性,识别率可分别高达77.22%、57.59%,实验结果表明,相比几种较为先进的人脸识别算法,该算法在处理单训练样本人脸识别问题时取得了更好的识别效果。
关 键 词:人脸识别 单训练样本 多流形判别分析 子空间学习 分块聚类
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...