期刊文章详细信息
文献类型:期刊文章
机构地区:[1]安徽农业大学计算机科学技术系,合肥230031
年 份:2002
卷 号:38
期 号:4
起止页码:98-101
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:粗集理论是处理知识不精确和不完善的一种归纳学习方法,其基本思想是在保持分类能力不变的前提下,通过知识约简,导出概念的分类规则。熵作为对不确定性的一种度量,可用于描述近似空间(U,R)中对象的分类情况。在文中,知识的粗糙性定义为近似空间中的粗糙熵,近似空间上基于等价关系的划分过程是其粗糙熵不断减小的过程。同时讨论了信息系统中的若干粗糙熵性质。
关 键 词:粗集理论 知识 粗糙性 人工智能
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...