期刊文章详细信息
抛物型积分-微分方程有限元近似的超收敛性质
SUPERCONVERGENCE OF FINITE ELEMENT APPROXIMATIONS TO INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE
文献类型:期刊文章
机构地区:[1]东北大学数学系,沈阳110006
年 份:2001
卷 号:23
期 号:3
起止页码:193-201
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSCD、CSCD2011_2012、JST、MR、ZGKJHX、ZMATH、核心刊
摘 要:The object of this paper is to investigate the superconvergence and ultraconvergence for the finite element approximations to integro-differential equations of parabolic type in one dimensional case. It is shown that the Lobatto, Gauss and quasi-Lobatto points on each subdivision element are superconvergence points for function, order-one and order-two derivative approximations, respectively. Another important result in our paper is that under a certain condition, we establish the ultraconvergence alternating theorem, where by ultraconvergence we denote the convergence rates are two-order higher than the optimal global convergence rates.
关 键 词:有限元 超收敛 抛物型 积分-微分方程 误差估计 收敛阶
分 类 号:O241.82] O175.6[数学类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...