登录    注册    忘记密码

期刊文章详细信息

基于组合式神经网络的短期电力负荷预测模型  ( EI收录)  

SHORT-TERM LOAD FORECASTING WITH MODULAR NEURAL NETWORKS

  

文献类型:期刊文章

作  者:陈耀武[1] 汪乐宇[1] 龙洪玉[1]

机构地区:[1]浙江大学仪器系,浙江杭州310027

出  处:《中国电机工程学报》

年  份:2001

卷  号:21

期  号:4

起止页码:79-82

语  种:中文

收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊

摘  要:通过对电力负荷变化规律和影响因素的分析 ,提出了一种基于组合式神经网络的短期电力负荷预测模型。该模型综合运用神经网络、模糊聚类分析和模式识别理论方法进行建模。首先 ,采用模糊聚类分析方法 ,以每天的 2 4点负荷数据、天气数据以及天类别数据为指标 ,将历史数据分成若干类别 ;其次 ,对每一类别建立相应的神经网络预测模型 ;预测时通过模式识别 ,找出与预测天相符的预测类别 ,利用相应的神经网络预测模型进行 2 4小时的短期电力负荷预测。对绍兴地区 2年多的实际负荷变化数据进行预测分析的结果表明 ,该模型不仅对普通工作日有较高的预测精度 ,对双休日。

关 键 词:电力系统 短期电力负荷预测模型  组合式神经网络

分 类 号:TM715]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心