登录    注册    忘记密码

期刊文章详细信息

基于量子粒子群优化反向传播神经网络的手势识别    

Gesture recognition based on quantum-behaved particle swarm optimization of back propagation neural network

  

文献类型:期刊文章

作  者:杨志奇[1] 孙罡[1]

机构地区:[1]天津大学仁爱学院计算机科学与技术系,天津301636

出  处:《计算机应用》

年  份:2014

卷  号:34

期  号:A01

起止页码:137-140

语  种:中文

收录情况:AJ、BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:反向传播(BP)神经网络算法在手势识别中得到了广泛的应用。为了对算法进行改进以提高BP神经网络的学习效率,提出一种基于量子粒子群优化BP神经网络的手势识别训练算法。在手势识别过程中,首先采用量子粒子群算法(QPSO)训练BP神经网络,获得优化的BP神经网络权值和阈值;合理地定义并提取BP神经网络的手势识别样本;最后采用训练过的BP神经网络对动态手势进行识别。该算法简单,不依赖初始值,并且收敛速度快,尤其对于高维复杂问题,能保证收敛到最优解。实验结果表明,该算法平均训练时间达到5.15 s,识别正确率达到95.1%,效果明显优于一般的BP神经网络算法。

关 键 词:反向传播神经网络 量子粒子群算法 手势识别 权值 阈值

分 类 号:TP183]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心