期刊文章详细信息
基于量子粒子群优化反向传播神经网络的手势识别
Gesture recognition based on quantum-behaved particle swarm optimization of back propagation neural network
文献类型:期刊文章
机构地区:[1]天津大学仁爱学院计算机科学与技术系,天津301636
年 份:2014
卷 号:34
期 号:A01
起止页码:137-140
语 种:中文
收录情况:AJ、BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊
摘 要:反向传播(BP)神经网络算法在手势识别中得到了广泛的应用。为了对算法进行改进以提高BP神经网络的学习效率,提出一种基于量子粒子群优化BP神经网络的手势识别训练算法。在手势识别过程中,首先采用量子粒子群算法(QPSO)训练BP神经网络,获得优化的BP神经网络权值和阈值;合理地定义并提取BP神经网络的手势识别样本;最后采用训练过的BP神经网络对动态手势进行识别。该算法简单,不依赖初始值,并且收敛速度快,尤其对于高维复杂问题,能保证收敛到最优解。实验结果表明,该算法平均训练时间达到5.15 s,识别正确率达到95.1%,效果明显优于一般的BP神经网络算法。
关 键 词:反向传播神经网络 量子粒子群算法 手势识别 权值 阈值
分 类 号:TP183]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...