期刊文章详细信息
文献类型:期刊文章
机构地区:[1]金华广播电视大学理工学院,浙江金华321000 [2]浙江工业大学信息工程学院,浙江杭州310032
年 份:2014
卷 号:31
期 号:4
起止页码:182-184
语 种:中文
收录情况:BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、ZGKJHX、核心刊
摘 要:基于卷积神经网络和深度信念网络各自的优点,通过把卷积神经网络的局部感受野引入到深度信念网络的单层中,把深度信念网络的单层分成多个子RBM,提出一种改进的深度信念网络。分别用BP网络、卷积神经网络、深度信念网络和改进的深度信念网络对模型MNIST和Cifar-10数据库进行小图像分类识别实验;根据实验结果,改进的深度信念网络在Cifar-10库上错误率为30.16%,比卷积神经网络低了9%,比传统的深度信念网络低了40%;在MNIST上的识别错误率为1.21%,比传统的深度信念网络分别降低了16%,略高于卷积神经网络。试验结果表明改进的DBN网络在小图像分类应用中是有效的。
关 键 词:深度学习 卷积神经网络 信念网络 字符识别 图像分类
分 类 号:TP391.43]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...