登录    注册    忘记密码

期刊文章详细信息

基于K-means算法的温室移动机器人导航路径识别  ( EI收录)  

Navigating path recognition for greenhouse mobile robot based on K-means algorithm

  

文献类型:期刊文章

作  者:高国琴[1] 李明[1]

机构地区:[1]江苏大学电气信息工程学院,镇江212013

出  处:《农业工程学报》

基  金:江苏省高校优势学科建设工程资助项目(PAPD)(苏政办发〔2011〕6号);镇江市农业科技支撑计划(NY2011013)

年  份:2014

卷  号:30

期  号:7

起止页码:25-33

语  种:中文

收录情况:AJ、BDHX、BDHX2011、CAB、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、EI(收录号:20141717605617)、FSTA、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:针对温室移动机器人机器视觉导航路径识别实时性差、受光照干扰影响严重等问题,首先,将HSI颜色空间3个分量进行分离,选取与光照信息无关且可以有效抑制噪声影响的色调分量H进行后续图像处理,以削弱光照对机器人视觉导航的不良影响;针对温室环境图像特有的颜色特征信息,引入K-means算法对图像进行聚类分割,将垄间道路信息与绿色作物信息各自聚类,再通过形态学腐蚀方法去除聚类后图像中存在的冗余、干扰信息,以获得完整的道路信息,与常用阈值分割方法相比,可降低因分割信息不明确而导致后续Hough变换进行直线拟合时需占据大量内存且计算量较大的问题,进而提高移动机器人路径识别的快速性,并适应温室作业机器人自主导航的高实时性要求。试验结果表明,该文方法在复杂背景与变光照条件下的温室作业环境中可大幅降低光照对机器人导航的影响,对于光照不均具有良好的鲁棒性,道路信息提取率可达95%。同时,其平均单幅图像处理时耗降低53.26%,可显著提高路径识别速度。该研究可为解决温室移动机器人机器视觉导航路径识别的鲁棒性及实时性问题提供参考。

关 键 词:温室 机器人 机器视觉 图像分割 路径识别  HSI颜色空间 K-MEANS算法

分 类 号:S24] TP242[农业工程类]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心