期刊文章详细信息
文献类型:期刊文章
机构地区:[1]广东金融学院计算机科学与技术系,广州510521
年 份:2014
卷 号:50
期 号:3
起止页码:75-78
语 种:中文
收录情况:AJ、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、普通刊
摘 要:为了提高网络入侵检测的正确率,提出一种改进蚁群优化算法(ACO)和支持向量机(SVM)相融合的网络入侵检测方法(ACO-SVM)。将SVM模型参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到SVM最优参数,采用最优参数建立网络入侵检测模型。利用KDDCUP99数据集对ACO-SVM性能进行测试,结果表明,ACO-SVM提高了网络入侵检测正确率,降低了误报率,可以为网络安全提供有效保证。
关 键 词:网络入侵 支持向量机 蚁群算法 检测
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...