登录    注册    忘记密码

期刊文章详细信息

基于机器视觉的玉米叶片透射图像特征识别研究    

Research on Maize Leaf Recognition of Characteristics from Transmission Image Based on Machine Vision

  

文献类型:期刊文章

作  者:唐俊[1] 邓立苗[2] 陈辉[1] 栾涛[1] 马文杰[1]

机构地区:[1]青岛农业大学动漫与传媒学院,山东青岛266109 [2]青岛农业大学理学与信息学院,山东青岛266109

出  处:《中国农业科学》

基  金:山东省自然科学基金项目(ZR2009GM006)

年  份:2014

卷  号:47

期  号:3

起止页码:431-440

语  种:中文

收录情况:BDHX、BDHX2011、CAB、CAS、CSCD、CSCD2013_2014、FSTA、GEOBASE、IC、JST、RCCSE、SCOPUS、WOS、ZGKJHX、ZR、核心刊

摘  要:【目的】建立玉米品种的叶片透射图像特征数据库,研究特征随品种的变化规律,分析各类特征的识别效果,为进一步研究玉米生长期间的机器视觉品种识别提供依据。【方法】以生产中推广的21个常规玉米品种为供试材料,分别采集拔节期、小喇叭口期、大喇叭口期、抽雄开花期4个生育时期的玉米叶片。在灯箱内,采集每一叶片的高画质透射图像,共计420张。基于Matlab R2009a开发了"玉米叶片特征提取与识别软件",包括图像预处理、特征提取、神经网络识别和阈值选取4个功能模块。依据开发的特征识别平台,对玉米叶片透射图像进行图像预处理和特征提取。提取形态类、颜色类和纹理类共计48个特征,特征数据量共计20 160条。分析48个特征品种间的变异系数,研究玉米叶片透射图像特征随品种的变化规律。建立BP神经网络模型进行综合识别,分析不同时期单特征的识别效果,寻找玉米叶片透射图像中品种区分能力较强的重要特征。进一步分析不同时期3大类特征及其组合的识别效果。【结果】在玉米的4个生育时期,叶片透射图像3类特征品种间的变异系数差异比较明显,颜色类特征变异系数最大,其次是纹理类特征变异系数,形态类特征变异系数最小,并且这种差异随着玉米的生长十分稳定。在玉米的4个生育时期,叶片透射图像48个特征的品种识别率差异比较明显,为9.52%—29.33%。R分量的标准差、短轴长、H分量的标准差、等面圆直径、H分量的平均值、V分量的标准差、B分量的标准差、不变矩6、椭圆度、S分量的平均值、外接凸多边形面积、B分量的平均值、平滑度、S分量的峰度、S分量的标准差的识别率较高,平均识别率在18%以上。单类特征中,颜色类特征识别率最高,平均86.76%;纹理类特征次之,平均为78.05%;形态类特征最低,平均为68.67%。颜色类特征和纹理类特�

关 键 词:玉米 透射图像  机器视觉 人工神经网络 品种识别  

分 类 号:S513]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心