期刊文章详细信息
采用神经网络和支持向量机预测啤酒中乙酸含量
Predicting acetic acid content in the final beer using neural networks and support vector machine
文献类型:期刊文章
机构地区:[1]四平金士百纯生啤酒股份有限公司,136001
年 份:2014
期 号:2
起止页码:62-67
语 种:中文
收录情况:普通刊
摘 要:啤酒中的乙酸大多是酵母在发酵过程中产生的。乙酸含量对啤酒风味的影响显著,尤其是含量高于闽值时。因此,控制乙酸的含量对保证啤酒风味一致性非常重要。在本项研究中,采用人工神经网络和支持向量机(SVM)来预测啤酒发酵结束时的乙酸含量。啤酒发酵过程参数和啤酒中乙酸含量之间的关系采用偏最小二乘(PLS)回归法、反向传播神经网络(BP—NN)、径向基函数神经网络(RBF—NN)和最小二乘支持向量机(LS-SVM)进行建模。本研究中所使用的数据来自同一品牌啤酒的146个生产批次。LS—SVM和RBF预测乙酸含量要优于RBP—NN和PLS。对比RBF—NN和LS—SVM,RBF—NN构建的模型可靠性更好,但预测的准确性要低一些。SVM有较好的泛化性,但是模型的可靠性较低。总之,在这项研究中,预测大生产啤酒发酵中的乙酸含量时,LS-SVM模型要优于RBF。
关 键 词:啤酒 神经网络支持向量机 有机酸 乙酸 发酵
分 类 号:TS262.5]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...