期刊文章详细信息
Contourlet变换系数加权的医学图像融合
Medical image fusion based on weighted Contourlet transformation coefficients
文献类型:期刊文章
机构地区:[1]温州医科大学信息与工程学院,温州325035 [2]温州大学物理与电子信息工程学院,温州325035
基 金:国家自然科学基金青年基金项目(11005081);浙江省教育厅科技项目(Y201223187)
年 份:2014
卷 号:19
期 号:1
起止页码:133-140
语 种:中文
收录情况:BDHX、BDHX2011、CSCD、CSCD2013_2014、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:目的由于获取医学图像的原理和设备不同,不同模式所成图像的质量、空间与时间特性都有较大差别,并且不同模式成像提供了不互相覆盖的互补信息,临床上通常需要对几幅图像进行综合分析来获取信息。方法为了提高对多源图像融合信息的理解能力,结合Contourlet变换在多尺度和多方向分析方法的优势,将Contourlet变换应用于医学图像融合中。首先将源图像经过Contourlet变换分解获得不同尺度多个方向下的分解系数。其次通过对Contourlet变换后的系数进行分析来确定融合规则。融合规则主要体现在Contourlet变换后图像中的低频子带系数与高频子带系数的优化处理中。针对低频子带主要反映图像细节的特点,对低频子带系数采用区域方差加权融合规则;针对高频子带系数包含图像中有用边缘细节信息的特点,对高频子带系数采用基于主图像的条件加权融合规则。最后经过Contourlet变换重构获得最终融合图像。结果分别进行了基于Contourlet变换的不同融合规则实验对比分析和不同融合方法实验对比分析。通过主观视觉效果及客观评价指标进行评价,并与传统融合算法进行比较,该算法能够克服融合图像在边缘及轮廓部分变得相对模糊的问题,并能有效地融合多源医学图像信息。结论提出了一种基于Contourlet变换的区域方差加权和条件加权融合算法。通过对CT与MRI脑部医学图像的仿真实验表明,该算法可以增加多模态医学图像互补信息,并能较好地提高医学图像融合的清晰度。
关 键 词:医学图像 图像融合 CONTOURLET变换 加权融合算法
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...