期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京邮电大学计算机系,北京100876
年 份:2013
卷 号:34
期 号:12
起止页码:127-131
语 种:中文
收录情况:CSA、IC、JST、普通刊
摘 要:最近几年,以微博为首的社交网络迅猛发展,这些平台上包含了网民对于时事热点的观点,对生活和人际关系的看法等大量有价值的信息和资源。由于微博数据非常庞大又难以获取等困难,如何有效地对社交网络进行数据挖掘,是近两年数据挖掘研究的重点和热点。本工作设计和实现了一个基于Hadoop的并行社交网络挖掘系统,包含了分布式数据库,并行爬虫,并行数据处理和并行数据挖掘算法集,可以有效地获取和分析挖掘海量的社交网络数据,为社团分析,用户行为分析,用户分类,微博分类等工作提供支持。
关 键 词:计算机应用技术 HADOOP平台 社交网络 数据挖掘
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...