期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京航空航天大学仪器科学与光电工程学院 [2]中国人民解放军95824部队 [3]空军工程大学防空反导学院 [4]中国人民解放军93897部队
基 金:国家自然科学基金项目(No.60975026)
年 份:2014
卷 号:50
期 号:2
起止页码:142-146
语 种:中文
收录情况:AJ、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、普通刊
摘 要:为提高多聚焦和医学图像融合的性能,提出了一种基于Shearlet变换的新型图像融合算法。与小波变换类似,Shearlet具有简单的数学结构,这使其可以很方便地和多分辨分析关联起来。在对一幅图像作Shearlet变换时,可以将其在任意尺度和方向上进行解构,因而Shearlet比传统小波可以捕获更多的方向和其他几何信息。所以对于图像融合来说,Shearlet是一种很好选择。对于Shearlet子带系数的选择,采用了一种改进的PCNN的点火幅度来得到融合策略,而不是传统PCNN方法中的点火次数,点火幅度通过一个Sigmoid函数来得到。并且采用改进拉普拉斯能量和(SML)这一有效的聚焦度量作为PCNN的输入,以提高其性能。实验结果表明,该方法在视觉效果和客观评价指标上都要优于小波和非下采样Contourle(tNSCT)方法。
关 键 词:SHEARLET变换 脉冲耦合神经网络(PCNN) 图像融合
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...