期刊文章详细信息
文献类型:期刊文章
机构地区:[1]西北民族大学数学与计算机科学学院,兰州730030
基 金:国家自然科学基金资助项目(11161041);2012年度国家民委科研资金资助项目;中央高校基本科研业务费专项资金资助项目(31920130009;zyz2012081)
年 份:2014
卷 号:34
期 号:1
起止页码:204-207
语 种:中文
收录情况:AJ、BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊
摘 要:针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点,提出一种基于K-means的人工蜂群(ABC)聚类算法。将改进的人工蜂群算法和K-means迭代相结合,使算法对初始聚类中心的依赖性和陷入局部最优解的可能性降低,提高了算法的稳定性。通过基于反向学习的初始化策略,增强了初始群体的多样性。利用非线性选择策略,改善了过早收敛问题,提高了搜索效率。通过对邻域搜索范围的动态调整,提高了算法收敛速度,增强了局部寻优能力。实验结果表明,该算法不仅克服了K-means算法稳定性差的缺点,而且具有良好的性能和聚类效果。
关 键 词:人工蜂群算法 聚类分析 K-MEANS 反向学习 非线性选择
分 类 号:TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...